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Abstract   
This paper is a part of the investigations, dealing with the mathematical structure 

of the stationary elliptical accretion discs in the model of Lyubarskij et al. [1], i.e., discs for 
which all the apse lines of the particle orbits are in line with each other. The main point of 
the adopted approach is to find linear relations between the integrals, entering into the 
dynamical equation for these objects. They will enable us to eliminate these complicate 
(and, generally speaking, unknown analytically) functions of the eccentricity e(u) and its 
derivative ė(u) ≡ de(u)/du of the individual orbits. Here u ≡ ln(p), where p is the focal 
parameter of the corresponding accretion disc particle orbit. During the process of 
realization of this program, we strike with the necessity to find analytical evaluations for 
two kinds of integrals:   

                     2 π                                                                                                                                                                                                         2 π                      

Li(e,ė) ≡ ∫[ln(1 + ecosφ)](1 + ecosφ) – 1[1 + (e – ė)cosφ]  – i dφ, (i = 0,…, 3), and Kj(e,ė) ≡ ∫[ln(1 + ecosφ)]× 
                      0                                                                                                                                                                                                            0                 
×[1 +(e – ė)cosφ] – j dφ, (j = 1, …, 5). In the present investigation we find recurrence relations, 
allowing us to compute the integrals Li(e,ė), (i = 1, 2, 3), under the condition that the 
integrals Li-1(e,ė) and Ki(e,ė) are already known. Conversely, computations of the integrals 
Kj(e,ė), (j = 1, …, 5), through the recurrence dependences do not require the knowledge of 
the analytical solutions of the integrals Li(e,ė), (i = 0, …, 3). In view of the fact that the 
integrals L0(e) (it does not depend on ė(u)) and K1(e,ė) serve as “starting--points” into the 
corresponding recurrence relations, we have find analytical expressions for them. The 
solution of the full set of analytical evaluations of Li(e,ė), (i = 1, 2, 3), and Kj(e,ė),  
(j = 2, …, 5), will be given elsewhere [7].   
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1. Introduction    
 

The present paper continues a series of investigations, devoted to the 
simplification of the dynamical equation of the elliptical accretion discs. 
Especially, the considerations are constrained to a specific model, developed 
by Lyubarskij at al. [1]. The essential property of this model is that the all 
elliptical particle orbits are sharing a common longitude of periastron. The 
other restriction, which we impose on the adopted elaboration, is that the 
accretion flow is stationary. That is why, the dynamical equation, with 
which we are dealing, governs the stationary space structure of the disc. We 
remind that the particle orbits at different parts of the disc, may have 
different eccentricities e(u), respectively. Here with the variable u we denote 
the logarithm of the focal parameter p of the corresponding elliptical orbit:  
u ≡ ln(p). Also we shall often use the notation ė(u) ≡ de(u)/du for the first 
ordinary derivative of the eccentricity e(u) with respect to u. The way we 
proceed, to reveal the mathematical structure of the above mentioned 
equation, is to eliminate certain definite integrals over the azimuthal angle 
φ. They are functions of e(u), ė(u) and the power n in the viscosity law  
η = β Σ n (β is a constant, η is the viscosity and Σ is the surface density of the 
accretion disc). The procedure of reducing of the number of these integrals, 
by means of establishing of linear relations between them, is described and 
applied in earlier papers ([2], [3] and the references therein). Until now, the 
question: if three of these functions I3(e,ė,n), I0-(e,ė,n) and I0+(e,ė,n) are 
linearly independent or not, still remains open (for definitions of these three 
integrals see [2] and [3]). The standard method to check which of these two 
alternative cases is available, is to compute the corresponding Wronskian. 
The procedure includes evaluation of some derivatives with respect to e(u) 
or ė(u) of the above mentioned integrals. In turn, this leads to appearing of 
two new integrals, for which we also have to find analytical solutions. In the 
course of realizing of this computational scheme, we, at first, must have 
available analytical expressions of given auxiliary integrals. In the preceding 
paper [4], we have given the solutions of such integrals, when their 
integrands do not include logarithmic functions of e(u) or ė(u). The present 
investigation deals just with this complementary case. It will be seen from 
the following exposition, that such integrals arise, when we obtain formulas, 
containing into their denominators factors, vanishing for some integer 
values of the power n. But from a physical point of view, we do not expect 
that the integer numbers n have “special” meanings in the considered 
accretion disc theory. And it is reasonable to check the “problem” formulas 
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for their behaviour, when n approaches the “singular” value. It turns out, 
that the corresponding nominators also tend to zero, “compensating” the 
divergent (at the first glance) character of the analytical expression. As 
usual, it is instructive to apply in this situation the L’Hospital’s rule for 
resolving of indeterminacies of the type 0/0. In turn, similar computational 
scheme implies the necessity of finding the partial derivatives with respect 
to the power n. More specifically, for the considered by us integrals, we 
shall compute derivatives like:    
(1)          ∂[(1 + ecosφ)n]/∂n = n ln(1 + ecosφ),    

according to the well-known rules from the differential calculus. In the 
above formula we take into account that the eccentricity e(u) (or the 
difference e(u) – ė(u), which may stand in the place of e(u)) and the 
azimuthal angle φ do not depend on n. Of course, the considered model of 
elliptical accretion discs [1] keeps fixed the power n (i.e., the viscosity law  
η = β Σ n remains valid throughout the entire disc) for every concrete 
accretion disc. The mathematical variability of n in the equality (1) should 
be supposed physically as a change/transition from one accretion flow (with 
a given fixed power n) to another accretion flow (with other, also fixed, but 
a little different value of n).    
 

2. Integrands, including as a factor logarithmic function   
   

 The available handbooks, which we had considered, in order to find 
already computed analytical expressions for the integrals, representing an 
interest for us, do not give a direct answer to the task. We do not strike only 
with the incompleteness of the lists of the cited formulas, but also with the 
need to obtain evaluations of the integrals, which are valid for special 
choices (i.e., restrictions on the domains) of the parameter space, 
characterizing them. Probably, the specialization of the considered by us 
problem, leads to two possible situations:  
       (i) The integrals, for which we are seeking, are too “specialized”, in 
view of the circumstance that the considered problem also treats too 
“narrow” aspects of the physical/mathematical theory. Correspondingly, 
such solutions of the integrals remain, as a rule, out of the attention of the 
compilers of the reference books, containing mathematical formulas.    
       (ii) In the other, generating difficulties case, the analytical expressions 
are very complicated formulas. Then, if even these solutions are found, they 
may not be included in many handbooks, for reasons of their extended form. 
The later property is, in particular, stipulated by the aspiration of the 
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calculators to resolve these integrals in the most general case of the domain 
of variables.  

Dealing with the problems of the types (i) and/or (ii), we have to 
overcome these troubles by performing our own computations of the 
considered integrals. Fortunately, we were able to find an analytical 
evaluation of an integral, which may serve as an initial starting-point for our 
further advance. In the reference handbook of Prudnikov et al. [4] is given 
the following formula for the analytical solution of the integral (formula on 
page 545; note that the integration is from 0 to π, not from 0 to 2π !):   
                     π                              
(2)         ∫[ln(1 – 2acosφ + a2)](1 – 2bcosφ + b2) – 1 dφ =    
                     0                    
                  ╔                                             ┌                              ┐ 
                  ║                                             │|b| < 1                    │ 
                  ║2π |1 – b2| – 1ln(1 – ab ± 1) ;   ┤            ,  |a| ≤ 1     ├  ,  
                  ║                                             │|b| > 1                    │                    
                  ║                                             └                              ┘       
           =  ═╣                                                                                     or   
                  ║                                             ┌                              ┐         
                  ║                                             │ |b| < 1                   │ 
                  ║2π |1 – b2| – 1ln|a – b ± 1| ;      ┤            ,  |a| > 1     ├  .  
                  ║                                             │ |b| > 1                   │       
                  ╚                                             └                              ┘         

For further use of the above formula, we shall express the parameters 
a and b by means of the eccentricity e(u) and its derivative ė(u) in a way, 
depending on the kind of the integral, which we intend to evaluate. At first 
glance, the existence of four possible branches in the right-hand-side of the 
relation (2), leads to the suspicion that the solutions, which are based on (2), 
are lacking of uniqueness. We shall see later, that in our applications all the 
four solutions are, in fact, identical. That is to say, the branching in our case 
makes no sense. We also stress that the eccentricity e(u), its derivative ė(u) 
and, correspondingly, their difference e(u) – ė(u) are real functions of u. In 
turn, the parameters a and b, expressed in terms of e(u) and ė(u), are also 
real quantities. Taking into account that we resolve the task under  
the conditions of satisfying the inequalities |e(u)| < 1, |ė(u)| < 1 and  
|e(u) – ė(u)| < 1, we could conclude that the integral into the left-hand-side 
of the equality (2) is a real function on e(u) and ė(u).Without any singular 
behaviour in the pointed out domain of these variables.   

Our main goal in the present paper is to compute analytically the 
following two kinds of integrals:   
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                                          2 π                      
(3)         Li(e,ė) ≡ ∫[ln(1 + ecosφ)](1 + ecosφ) – 1[1 + (e – ė)cosφ] – i  dφ  ;   i = 0, …, 3 ,  
                                            0                   
                                            2 π                 
(4)         Kj(e,ė) ≡ ∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – j dφ ;   j = 1, …, 5 .  
                                             0                       
           The above integrals resemble to the integrals:   
                                           2 π                   
(5)         Ai(e,ė) ≡ ∫[1 + (e – ė)cosφ] – i  dφ ;   i = 1, …, 5 ,  
                                            0           
                                          2 π             
(6)         Jj(e,ė) ≡ ∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – j dφ ;   j = 1, …, 4 ,    
                                           0                 
                                            2 π                
(7)         Hj(e,ė) ≡ ∫(1 + ecosφ) – j [1 + (e – ė)cosφ] – 1 dφ ;   j = 1, …, 4 ,    
                                            0                  
in the sense, that in the denominators of the integrands encounter as factors 
certain powers of the quantities (1 + ecosφ) or [1 + (e – ė)cosφ]. But for the 
first system of integrals (3) & (4), the nominators are equal to the 
logarithmic function ln(1 + ecosφ), instead to unity. The later circumstance 
essentially complicates the analytical evaluations of Li(e,ė), (i = 0, …, 3) 
and Kj(e,ė), (j = 1, …, 5), in comparison with the corresponding 
computations of the integrals Ai(e,ė), (i = 1, …, 5), Jj(e,ė) and Hj(e,ė), (j = 
=1, …, 4), which were done in an earlier paper [4]. Of course, the selection 
of the powers of the factors (1 + ecosφ) and [1 + (e – ė)cosφ] into the 
definitions (3) and (4), is predetermined by the necessity of the applications 
of the analytical solutions for our own future developments. That is to say, 
like the situation with Ai(e,ė), Jj(e,ė) and Hj(e,ė), the integrals Li(e,ė) and 
Kj(e,ė), in principle, may be evaluated analytically for arbitrary non-
negative integers i or j, by the means, which we shall use in the present 
paper. But we shall limit us further only to the necessary minimum of 
computations. These will be based on the application of the relation (2), and 
in connection with this, we make the following important remark. We do 
not trace back the derivation of the formula (2) and accept to trust the 
adduced solution of the Prudnikov et al. [5]. To preserve us from any 
possible incorrectness of this formula, we further check the derived 
analytical expressions also by means of numerical computations for a dense 
enough  lattice of values of  e(u) and  ė(u). Both in the open  interval  (– 1.0;  
+ 1.0), taking also into account that |e(u) – ė(u)| < 1. Speaking in advance, 
we note that there is not doubt in the validity of the relation (2), because the 
discrepancies between the analytical and numerical evaluations (based on 
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the formula (2)) are of the order 10 – 11 – 10 – 13 – the accuracy of the 
numerical computations itself.   
 

2.1. Recurrence relations for the integrals of the type  
                                2 π                      

            Li(e,ė) ≡ ∫[ln(1 + ecosφ)](1 + ecosφ) – 1[1 + (e – ė)cosφ] – i  dφ    
                                                  0                   

We shall establish in this chapter a number of relations between the 
integrals given by the definitions (3) and (4), which will enable us to 
evaluate in an explicit analytical form these integrals as functions of the 
eccentricity e(u) and its derivative ė(u) ≡ de(u)/du. Actually, these formulas 
will be  recurrence relations for the  first kind  of  integrals, namely,  Li(e,ė),  
(i = 0, , 3). They will include also integrals of the type Kj(e,ė), (j = 1, …, 5), 
which, at the present stage of the computations, are still unknown functions 
of e(u) and ė(u). Later we shall find another recurrence relations about 
Kj(e,ė), (j = 1, …, 5), that refer only to this kind of integrals. As a final 
result, this will give us an opportunity to calculate in an explicit form the 
integrals Kj(e,ė), (j = 1, …, 5). Returning back to the recurrence relations 
for Li(e,ė), (i = 0, …, 3), derived below in the present chapter, we finally are 
in a position to write explicitly the analytical solutions for the integrals 
Li(e,ė), (i = 0, …, 3).   

We begin with the remark that L0(e) is a function only of the 
eccentricity e(u), but not of its derivative ė(u):   
                                       2 π                 
(8)         L0(e) ≡ ∫[ln(1 + ecosφ)](1 + ecosφ) – 1 dφ.    
                                        0               

To the end of the present chapter, we shall suppose that e(u) ≠ 0 and  
ė(u) ≠ 0. The evaluations of L1(e,ė), L2(e,ė) and L3(e,ė) for these particular 
values of their arguments are more appropriate to be given, when the full 
expressions for them are already available. According to the definitions (3) 
and (4), we have:  
                                            2 π            
(9)         L3(e,ė) ≡ ∫[ln(1 + ecosφ)](1 + ecosφ) – 1[1 + (e – ė)cosφ] – 3 dφ =     
                                             0                    
                          2 π                     
              = ∫{[1 + (e – ė)cosφ] – (e – ė)cosφ}[ln(1 + ecosφ)](1 + ecosφ) – 1× 
                           0                                 
                                                                                      2 π                       
              ×[1 + (e – ė)cosφ] – 3 dφ = ∫[ln(1 + ecosφ)](1 + ecosφ) – 1[1 + (e – ė)cosφ] – 2 dφ –  
                                                                                       0                    
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                                                 2 π                             
              – [(e – ė)/e]∫[(1 + ecosφ) – 1][ ln(1 + ecosφ)](1 + ecosφ) – 1[1 + (e – ė)cosφ] – 3 dφ = 
                                                   0                    
                                                                         2 π                             
              = L2(e,ė) – [(e – ė)/e]∫[ ln(1 + ecosφ)][1 + (e – ė)cosφ] – 3 dφ +   
                                                                          0            
                                                  2 π                        
              + [(e – ė)/e]∫[ln(1 + ecosφ)](1 + ecosφ) – 1[1 + (e – ė)cosφ] – 3 dφ =      
                                                   0            
              = L2(e,ė) – [(e – ė)/e]K3(e,ė) + [(e – ė)/e]L3(e,ė).    
 

Therefore, transferring the last term [(e – ė)/e]L3(e,ė) into the right-
hand-side, we obtain that:   
(10)       {1 – [(e – ė)/e]}L3(e,ė) ≡ (ė/e)L3(e,ė) = L2(e,ė) – [(e – ė)/e]K3(e,ė),  

or, multiplying by e/ė:   
(11)       L3(e,ė) = (e/ė)L2(e,ė) – [(e – ė)/ė]K3(e,ė).  

By the exactly analogous way, we may derive recurrence relations 
for the integrals L2(e,ė) and L1(e,ė). We simply write here the final results:   
                                            2 π                        
(12)       L2(e,ė) ≡ ∫[ln(1 + ecosφ)](1 + ecosφ) – 1[1 + (e – ė)cosφ] – 2 dφ =     
                                             0                    
              = (e/ė)L1(e,ė) – [(e – ė)/ė]K2(e,ė),  
                                            2 π                        
(13)       L1(e,ė) ≡ ∫[ln(1 + ecosφ)](1 + ecosφ) – 1[1 + (e – ė)cosφ] – 1 dφ =     
                                            0                    
              = (e/ė)L0(e,ė) – [(e – ė)/ė]K1(e,ė).   
 

 We call to mind, that the above formulas are deduced under the 
assumptions that e(u) ≠ 0 and  ė(u) ≠ 0. Obviously, the equations (11), (12) 
and (13) are useful if K1(e,ė), K2(e,ė) and K3(e,ė) are already known 
functions of e(u) and ė(u).   
 
            2.2. Analytical computation of the integral  
                                             2 π                  

            L0(e) ≡ ∫[ln(1 + ecosφ)](1 + ecosφ) – 1 dφ       
                                              0                      

For our present purposes we shall transform the left-hand-side  of the 
formula (2) (given by Prudnikov et al. [5]) in the following way:  
                     π                              
(14)       ∫[ln(1 – 2acosφ + a2)](1 – 2bcosφ + b2) – 1 dφ =    
                     0 
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                           π                                
              = ∫{ln{(1 + a2){1 – [2a/(1 + a2)]cosφ}}}(1 + b2) – 1{1 – [2b/(1 + b2)]cosφ} – 1 dφ =  
                           0                           
                                                                               π                    
              = (1 + b2) – 1[ln(1 + a2)]∫{1 – [2b/(1 + b2)]cosφ} – 1 dφ +  
                                                                               0               
                                                   π                    
              + (1 + b2) – 1∫ {ln{1 – [2a/(1 + a2)]cosφ}}{1 – [2b/(1 + b2)]cosφ} – 1 dφ.   
                                                   0                           
 We remind here that, unlike the previous integrals, now the 
integration is from 0 to π, not from 0 to 2π ! Let us substitute:   
(15)       – [2a/(1 + a2)] = – [2b/(1 + b2)] = e(u).  

Therefore, we are able to write, in agreement with the relation (2), 
that:  
 

                     π                 
(16)       ∫[ln(1 + ecosφ)](1 + ecosφ) – 1 dφ = – π[ln(1 + a2)](1 – e2) – 1/ 2 +  
                     0                
                  ╔                                                         ┌                             ┐ 
                  ║                                                         │|b| < 1                   │ 
                  ║2π (1 + b2)|1 – b2| – 1ln(1 – ab ± 1) ;   ┤            ,  |a| ≤ 1    ├  ,  
                  ║                                                         │|b| > 1                   │                    
                  ║                                                         └                             ┘       
           +  ═╣                                                                                                 or   
                  ║                                                         ┌                             ┐         
                  ║                                                         │ |b| < 1                  │ 
                  ║2π (1 + b2)|1 – b2| – 1ln|a – b ± 1| ;      ┤            ,  |a| > 1    ├  .  
                  ║                                                         │ |b| > 1                  │       
                  ╚                                                         └                             ┘        

 

We shall now check the validity of the “obvious” condition a = b. 
We have that:   
(17)       – [2a/(1 + a2)] = – [2b/(1 + b2)]   ═>   a + ab2 = b + a2b ,  or    

(18)       ab2 – a2b – b + a = 0.  

           We write the above equality as a quadratic equation with respect to b:   
(19)       ab2 + (– 1 – a2)b + a = 0.   

Correspondingly, the solutions of this equation are:   
(20)       bI,II = [a2 + 1 ± (1 + 2a2 + a4 – 4a2)1/ 2]/(2a) = {a2 + 1 ± [(1 – a2)2]1/ 2}/(2a) =  

             = [a2 + 1 ± (1 – a2)]/(2a).  
 

The two solutions are, therefore:  
(21)       bI = (a2 + 1 – 1 + a2)/(2a) ≡ a,   and     
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(22)       bII = (a2 + 1 + 1 – a2)/(2a) ≡ 1/a.  

The existence of the above equalities means that we have to consider 
two cases: bI = a and bII = 1/a. However, let us examine at first, how the 
restriction |e(u)| < 1 imposes itself other restrictions over the variables a and 
b. We have that, according to the substitution (15):  
(23)       – 2a = e + ea2,  

which implies a quadratic equation for a:   
(24)       ea2 + 2a + e = 0.   

Solving with respect to a this quadratic equation, we obtain:  
(25)       a1,2 = [– 2 ± (4 – 4e2)1/ 2]/(2e) = [– 1 ± (1 – e2)1/ 2]/e.  

  We have to investigate the following four situations:   
       (i) solution a1 = [– 1 + (1 – e2)1/ 2]/e; |a1| = |– 1 + (1 – e2)1/ 2|/|e| < 1. This 
implies that: 
(26)       |– 1 + (1 – e2)1/ 2| < |e| .   

  Because |e| < 1, we can write 0 < 1 – e2 < 1, or (1 – e2)1/ 2 < 1. 
Further we have:  
– 1 + (1 – e2)1/ 2 < 0, which means that |– 1 + (1 – e2)1/ 2| = 1 – (1 – e2)1/ 2. 
Consequently, from the inequality (26) follows that: 0 < 1 – (1 – e2)1/ 2 < |e|. 
Therefore:  
0 < 1 – |e| < (1 – e2)1/ 2. Raising into square will give:   
(27)       1 + e2 – 2|e| < 1 – e2   =>   2e2 < 2|e|   =>   e2 < |e|   => |e| < 1.  

The above chain of inequalities means that we do not arrive at a 
contradiction. That is to say, this case (i) is admissible.    
       (ii) solution a1 = [– 1 + (1 – e2)1/ 2]/e; |a1| = |– 1 + (1 – e2)1/ 2|/|e| >1.This 
implies that: 
(28)       |– 1 + (1 – e2)1/ 2| > |e| .   

      Because |e| < 1, we can write e2 < 1, or 0 < 1 – e2 < 1, and (1 – e2)1/ 2 < 1. 
Further we have: – 1 + (1 – e2)1/ 2 < 0, which means that |– 1 + (1 – e2)1/ 2| = 
= 1 – (1 – e2)1/ 2. We shall substitute the later equality into the inequality 
(28). Unlike the previous case (i), now the sign of the inequality (28) is 
changed in comparison with (26). This will introduce a radical change in our 
conclusions. According to  (28),  we  write [0  <  1 – (1 – e2)1/ 2]  ∩ [1 – (1 –  
– e2)1/ 2 > |e|], or [0 < 1 – |e|] ∩ [1 – |e| > (1 – e2)1/ 2] . Raising into square 
will give:  
(29)       1 + e2 – 2|e| > 1 – e2   =>   2e2 > 2|e|   =>   e2 > |e|    =>   |e| > 1.  
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We derive a contradiction, because, by hypothesis, |e| < 1. That is to 
say, the considered case (ii) is not permitted!  
      (iii) solution a2 = [– 1 – (1 – e2)1/ 2]/e; |a2| = |– 1 – (1 – e2)1/ 2|/|e| < 1.This 
implies that: 
(30)       |– 1 – (1 – e2)1/ 2| ≡ 1 + (1 – e2)1/ 2 < |e| .   

This relation may be immediately rewritten as:   
(31)       0 < 1 – |e| < – (1 – e2)1/ 2 < 0.  

  It turns out that must be fulfilled simultaneously two inequalities 
about the difference 1 – |e|:   
(33)       (1 – |e| > 0) ∩ (1 – |e| < 0).  

i.e., we obtain a contradiction. Therefore, the considered case (iii) is not 
permitted!  
       (iv) solution a2 = [– 1 – (1 – e2)1/ 2]/e; |a2| = |– 1 – (1 – e2)1/ 2|/|e| >1.This 
implies that:  
(34)       |– 1 – (1 – e2)1/ 2| ≡ 1 + (1 – e2)1/ 2 > |e| ,   

(35)       1 – |e| > – (1 – e2)1/ 2   =>   1 – |e| > 0 > – (1 – e2)1/ 2.    
           Correspondingly, in this case (iv) we do not strike with a 
contradiction.  
           To summarize the conclusions from the considered above four 
possible opportunities, we shortly say that,  under the restriction |e(u)| < 1:  
       1) The solution of the quadratic equation (24) a1 = [– 1 + (1 – e2)1/ 2]/e 
is in agreement with this restriction only if |a| < 1;  
       2) The solution of the quadratic equation (24) a2 = [– 1 – (1 – e2)1/ 2]/e is 
in agreement with this restriction only if |a| > 1.   
           The situation is illustrated graphically in Figure 1 (a) and (b).    
           Because of the symmetry, given by the equalities (15), the same 
conclusions are valid for the coefficient b, where we have to consider the 
quadratic equation  
(36)       eb2 + 2b + e = 0,  

instead of the equation (24).   
       3) The solution of the quadratic equation (36) b1 = [– 1 + (1 – e2)1/ 2]/e 
is in agreement with the restriction |e(u)| < 1 only if |b| < 1;  
       4) The solution of the quadratic equation (36) b2 = [– 1 – (1 – e2)1/ 2]/e is 
in agreement with the restriction |e(u)| < 1 only if |b| > 1.  
           We must not confuse the roots bI and bII with the roots b1 and b2 !   
            Having in mind the above preliminary remarks, we now return to the 
investigation of the equation (19).  
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           Case I: b = a. Subcase 1: |b| = |a| < 1.      
           According to the deductions 1) and 3), a1 = b1 = [– 1 + (1 – e2)1/ 2]/e. 
Then, in view of the formula (16):   
                      π                               
(37)       ∫[ln(1 + ecosφ)](1 + ecosφ) – 1 dφ = – π{ln[1 + (a1)

2]}(1 – e2) – 1/ 2 +  
                     0   

              + 2π[1 + (a1)
2][1 – (a1)

2] – 1ln[1 – (a1)
2]. 

                       

 
 

a) Case (i): |a1| = |– 1 + (1 – e2)1/ 2|/|e| < 1. 
 

 
 

b) Case (iv): |a2| = |– 1 – (1 – e2)1/ 2|/|e| > 1. 
 

                     Fig.1. Solutions of the quadratic equation (24) ea2 + 2a + e = 0    
 

We compute the following auxiliary expressions:   
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(38)       1 + (a1)
2 = 1 + (1/e2)[1 + 1 – e2 – 2(1 – e2)1/ 2] = (2/e2)[1 – (1 – e2)1/ 2] > 0,  

(39)       1 – (a1)
2 = 1 – (1/e2)[1 + 1 – e2 – 2(1 – e2)1/ 2] = (1/e2)[e2 – 2 + e2 + 2(1 – e2)1/ 2] =  

              = (2/e2)[e2 – 1 + (1 – e2)1/ 2][ 1 + (1 – e2)1/ 2][1 + (1 – e2)1/ 2] – 1 =   

              = 2e2(1 – e2)1/ 2/{e2[1 + (1 – e2)1/ 2]} ≡ 2(1 – e2)1/ 2/[1 + (1 – e2)1/ 2].  

Consequently, we have:  
(40)       0 < 1 – (a1)

2 = 2(1 – e2)1/ 2/[1 + (1 – e2)1/ 2] < 1.  
                     π                               
(41)       ∫[ln(1 + ecosφ)](1 + ecosφ) – 1 dφ = solution 1 ≡  
                     0  
              ≡ – π(1 – e2) – 1/ 2ln{(1/e2)[2 – 2(1 – e2)1/ 2]} + 
              + 2π(2/e2)[1 – (1 – e2)1/ 2][1 + (1 – e2)1/ 2][2(1 – e2)1/ 2] – 1×  
              ×ln{2(1 – e2)1/ 2/[1 + (1 – e2)1/ 2]}= – π(1 – e2) – 1/ 2ln{(1/e2)[2 – 2(1 – e2)1/ 2]} + 
              + 2π(1 – e2) – 1/ 2ln{2(1 – e2)1/ 2/[1 + (1 – e2)1/ 2]}= π(1 – e2) – 1/ 2ln{4e2(1 – e2)× 
              ×{2[1 – (1 – e2)1/ 2][1 + (1 – e2)1/ 2][1 + (1 – e2)1/ 2]} – 1} =  
              = π(1 – e2) – 1/ 2ln{2e2(1 – e2){(1 – 1 + e2)[1 + (1 – e2)1/ 2]}– 1} .  
 

Finally, we are able to write for this case:   
                     π                               
(42)       ∫[ln(1 + ecosφ)](1 + ecosφ) – 1 dφ = solution 1 ≡  
                     0                       
              ≡ π(1 – e2) – 1/ 2ln{2(1 – e2)[1 + (1 – e2)1/ 2] – 1} ≡  
              ≡ – π(1 – e2) – 1/ 2ln{[1 + (1 – e2)1/ 2][2(1 – e2)] – 1}.  
   

Case I: b = a. Subcase 2: |b| = |a| > 1.      
  According to the deductions 2) and 4), a2 = b2 = [– 1 – (1 – e2)1/ 2]/e. 
Then, in view of the formula (16):   
                     π                               
(43)       ∫[ln(1 + ecosφ)](1 + ecosφ) – 1 dφ = – π(1 – e2) – 1/ 2ln[1 + (a2)

2] +  
                     0                           
              + 2π[1 + (a2)

2]|1 – (a2)
2| – 1ln|a2 – 1/a2| .  

 

We compute the following auxiliary expressions:  
(44)       1 + (a2)

2 = 1 + (1/e2)[1 + 1 – e2 + 2(1 – e2)1/ 2] = (2/e2)[1 + (1 – e2)1/ 2],  

(45)       1 – (a2)
2 = 1 – (1/e2)[1 + 1 – e2 + 2(1 – e2)1/ 2] = (1/e2)[e2 – 2 + e2 – 2(1 – e2)1/ 2] =  

              = (2/e2)[e2 – 1 – (1 – e2)1/ 2][1 – (1 – e2)1/ 2][1 – (1 – e2)1/ 2] – 1 =  

              = – 2(1 – e2)1/ 2[1 – (1 – e2)1/ 2] – 1 < 0,  

(46)       |a2 – 1/a2| = |[(a2)
2 – 1]/a2| = |(a2)

2 – 1|/|a2| = [(a2)
2 – 1]/|a2| =  

             = 2|e|(1 – e2)1/ 2[1 + (1 – e2)1/ 2] – 1[1 – (1 – e2)1/ 2] – 1 =  

             = 2|e|(1 – e2)1/ 2(1 – 1 + e2) – 1 = 2(1 – e2)1/ 2/|e| .   
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The derivation of the equality (46) takes into account the last 
inequality in (45), according to which (a2)

2 –1 > 0, implying that |(a2)
2 – 1| = 

= (a2)
2 – 1. Therefore, in the present subcase we can write:   

                     π                            
(47)       ∫[ln(1 + ecosφ)](1 + ecosφ) – 1 dφ = solution2 ≡                             
                     0                
              ≡ – π(1 – e2) – 1/ 2ln{(2/e2)[1 + (1 – e2)1/ 2]} + π(1 – e2) – 1/ 2ln[4(1 – e2)/e2] =  

              = – π(1 – e2) – 1/ 2ln{2e2[1 + (1 – e2)1/ 2]/[4e2(1 – e2)]} =  

              = – π(1 – e2) – 1/ 2ln{[1 + (1 – e2)1/ 2][2(1 – e2)] – 1} = solution 1.   

We see that the both subcases give the same analytical solutions for 
the integral that we are resolving!   

Case II: b = 1/a. Subcase 3: |b| = |1/a| < 1.          
According to the deductions 2) and 3), a = a2 = [– 1 – (1 – e2)1/ 2]/e 

and b = b1 = [– 1 + (1 – e2)1/ 2]/e. Then, applying formula (16):  
                     π                               
(48)       ∫[ln(1 + ecosφ)](1 + ecosφ) – 1 dφ = solution 3 ≡ – π(1 – e2) – 1/ 2ln[1 + (a2)

2] +  
                     0                                  
              + 2π[1 + (b1)

2]|1 – (b1)
2| – 1ln|a2 – b1| .  

 

       Note that b1 = (1/e)[– 1 + (1 – e2)1/ 2][1 + (1 – e2)1/ 2][1 + (1 – e2)1/ 2] – 1 = 
= (1/e)(1 – e2 – 1)[1 + (1 – e2)1/ 2] – 1 = e[–1 – (1 – e2)1/ 2] – 1 = 1/(a2), i.e., b1 = 
= 1/(a2). This result once again affirms the consistency of our calculations. 
We shall use the already computed expressions (38) and (39) for 1 + (a1)

2 
and  1 – (a1)

2, respectively, because  

1 + (b1)
2 = 1 + (a1)

2 and  |1 – (b1)
2| = |1 – (a1)

2|.   
Moreover:  
(49)       |a2 – b1| = |a2 – 1/(a2)|.   

            After these remarks, we have:   
                     π                               
(50)       ∫[ln(1 + ecosφ)](1 + ecosφ) – 1 dφ = solution 3 ≡  
                   0                   
              = – π(1 – e2) – 1/ 2ln{(2/e2)[1 + (1 – e2)1/ 2]} + 2π{2[1 – (1 – e2)1/ 2][1 + (1 – e2)1/ 2]× 
              ×[2e2(1 – e2)1/ 2] – 1ln[2(1 – e2)1/ 2|e| – 1] = – π(1 – e2) – 1/ 2ln{(2/e2)[1 + (1 – e2)1/ 2]} +  
              + π(1 – e2) – 1/ 2[(1 – 1 + e2)/e2]ln[4(1 – e2)/e2] =  
              = – π(1 – e2) – 1/ 2ln{[1 + (1 – e2)1/ 2][2(1 – e2)] – 1} = solution 1.   

           We again have a coincidence with the earlier evaluations of the 
considered integral.    

            Let us to proceed to the last remaining case in formula (16).  
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Case II: b = 1/a. Subcase 4: |b| = 1/|a| > 1.          
           According to the deductions 1) and 4), we have a = a1 = (1/e)[– 1 +  
+ (1 – e2)1/ 2] and b = b2 = (1/e)[– 1 – (1 – e2)1/ 2]. Note that b2 = (1/e)[– 1 – 
– (1 – e2)1/ 2][1 – (1 – e2)1/ 2]×[1 – (1 – e2)1/ 2] – 1 = (– 1/e)(1 – 1 + e2)[1 –(1 – 
– e2)1/ 2] – 1 = e[– 1 + (1 – e2)1/ 2] – 1 = 1/a1, i.e., b2 = 1/a1. This result once 
again affirms the consistency of our calculations.  
                     π                               
(51)       ∫[ln(1 + ecosφ)](1 + ecosφ) – 1 dφ = solution 4 ≡ – π(1 – e2) – 1/ 2ln[1 + (a1)

2] +  
                     0                                  
              + 2π[1 +( b2)

2]|1 – (b2)
2| – 1ln|1 – a1/b2| .  

            Taking into account that 1 + (b2)
2 = 1 + (a2)

2 (see equality (44)) and 
|1 – (b2)

2| = |1 – (a2)
2| = 2(1 – e2)1/ 2[1 – (1 – e2)1/ 2] – 1 (see equality (45)), and 

also (1 – a1/b2) = [1 – (a1)
2] = 2(1 – e2)1/ 2[1 + (1 – e2)1/ 2] – 1, we find that in 

this subcase:   
                     π                               
(52)       ∫[ln(1 + ecosφ)](1 + ecosφ) – 1 dφ = solution 4 ≡  
                     0                                  
            ≡ – π(1 – e2) – 1/ 2ln{(2/e2)[1 – (1 – e2)1/ 2]} + 2π{2[1 + (1 – e2)1/ 2][1 – (1 – e2)1/ 2]× 
            ×[2e2(1 – e2)1/ 2] – 1ln{2(1 – e2)1/ 2[1 + (1 – e2)1/ 2] – 1} =  
            = – π(1 – e2) – 1/ 2ln{(2/e2)[1 – (1 – e2)1/ 2]} +  
            + π(1 – e2) – 1/ 2[(1 – 1 + e2)/e2]ln{4(1 – e2)[1 + (1 – e2)1/ 2] – 2} =  
            = – π(1 – e2) – 1/ 2ln{2[1 – (1 – e2)1/ 2][1 + (1 – e2)1/ 2][1 + (1 – e2)1/ 2][4e2(1 – e2)] – 1}= 
            = – π(1 – e2) – 1/ 2ln{(1 – 1 + e2)[1 + (1 – e2)1/ 2][2e2(1 – e2)] – 1} =  
            = – π(1 – e2) – 1/ 2ln{[1 + (1 – e2)1/ 2][2(1 – e2)] – 1} = solution 1.  
 

The final conclusion is that for all cases/subcases we obtain identical 
results. It is also easily checked, that the extension of the interval of 
integration over the azimuthal angle φ from [0, π] to [0, 2π], simply leads to 
a multiplying of the results by a factor of two. Therefore:  
                                        2π                               
(53)       L0(e) ≡ ∫[ln(1 + ecosφ)](1 + ecosφ) – 1 dφ =  
                                        0                                
              = – 2π(1 – e2) – 1/ 2ln{[1 + (1 – e2)1/ 2][2(1 – e2)] – 1}.   
 

            It must be emphasized that the above derivations are performed 
under the condition e(u) ≠ 0. Bur the direct computation for L0(0) gives a 
zero value, because for this case ln(1 + ecosφ) ≡ 0. The same evaluation 
follows also from the formula (53), though it was established under non-
zero values of the eccentricity e(u). Consequently, we are able to apply the 
evaluation (53) for L0(e) for arbitrary values of e(u) belonging to the open 
interval (– 1.0; + 1.0).  
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2. 3. Analytical computation of the integral  
                                                   2 π               

        K1(e,ė) ≡ ∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 1 dφ           
                                                    0                   
            First of all, we note that the integral K0(e), which does not depend 
on the derivative ė(u) ≡ de(u)/du, is already calculated in [6]. According to 
formula 865.44 in this handbook of formulas, we have:  
                                        2 π             
(54)       K0(e) ≡ ∫ln(1 + ecosφ) dφ = 2π ln{[1 + (1 – e2)1/ 2]/2}.   
                                         0            
           Our main purpose in the present chapter is to find analytical 
evaluations for the integrals Ki(e,ė), (i = 1, …, 5), given by the definition 
(4). For this reason, we rewrite formula (2) into the following, more suitable 
form (see also the relation (14)):    
 
                     π                              
(55)       ∫[ln(1 – 2acosφ + a2)](1 – 2bcosφ + b2) – 1 dφ =    
                     0                     
                                                                              π                    
              = (1 + b2) – 1[ln(1 + a2)]∫{1 – [2b/(1 + b2)]cosφ} – 1 dφ +  
                                                                               0                                   
                                                   π                    
              + (1 + b2) – 1∫{ln{1 – [2a/(1 + a2)]cosφ}}{1 – [2b/(1 + b2)]cosφ} – 1 dφ =     
                                                   0                           
                                                                         π               
              = (1 + b2) – 1[ln(1 + a2)]∫[1 + (e – ė)cosφ] – 1 dφ +  
                                                                               0                          
                                                   π                                        
              + (1 + b2) – 1∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 1 dφ.  
                                                   0                          

We have used above the two substitutions:    
(56)       – 2a/(1 + a2) = e(u),           and  

(57)       – 2b/(1 + b2) = e(u) – ė(u).  

            We use also the result/formula 858.524 from Dwight [6]:  
                      π                    
(58)        ∫[1 + (e – ė)cosφ] – 1 dφ = π[1 – (e – ė)2] – 1/ 2.    
                      0                 
           Therefore:   
                    π                              
(59)      ∫[ln(1 – 2acosφ + a2)](1 – 2bcosφ + b2) – 1 dφ =    
                   0                  
            = – π[1 – (e – ė)2] – 1/ 2ln(1 + a2) +   
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                  ╔                                                         ┌                             ┐ 
                  ║                                                         │|b| < 1                   │ 
                  ║2π (1 + b2)|1 – b2| – 1ln(1 – ab ± 1) ;   ┤            ,  |a| ≤ 1    ├  ,  
                  ║                                                         │|b| > 1                   │                    
                  ║                                                         └                             ┘       
           +  ═╣                                                                                                 or   
                  ║                                                         ┌                             ┐         
                  ║                                                         │ |b| < 1                  │ 
                  ║2π (1 + b2)|1 – b2| – 1ln|a – b ± 1| ;      ┤            ,  |a| > 1    ├  .  
                  ║                                                         │ |b| > 1                  │       
                  ╚                                                         └                             ┘ 

The solution of the equation (56) gives two roots:  
(60)        a1 = [– 1 + (1 – e2)1/ 2]/e,  

(61)        a2 = [– 1 – (1 – e2)1/ 2]/e.  

            The solution of the equation (57) also gives two roots:   
(62)        b1 = {– 1 + [1 – (e – ė)2]1/ 2}/(e – ė),  

(63)        b2 = {– 1 – [1 – (e – ė)2]1/ 2}/(e – ė).  

            The restriction |e(u)| < 1 implies that |a1| < 1 and |a2| > 1. From the 
other hand, the restriction |e(u) – ė(u)| < 1 implies that |b1| < 1 and |b2| > 1. 
Let us find relations between the systems of roots {a1, a2} and {b1, b2}, 
respectively. From substitutions (56) and (57) follows that:  
(64)       – 2b/(1 + b2) + 2a/(1 + a2) = – ė(u).  

Multiplication of this equality by (1 + a2)(1 + b2) leads to a new 
form of this relation:  
(65)       – 2b(1 + a2) + 2a(1 + b2) = – ė(1 + a2)( 1 + b2)    < = >  

              < = >    – 2b – 2ba2 + 2a + 2ab2 + ė + ėb2 + ėa2 + ėa2b2 = 0.   
If we consider the variable b as an unknown quantity, the later 

equality may be regarded as a quadratic equation for b:  
(66)       (ėa2 + 2a + ė)b2 + (– 2 – 2a2)b + (ėa2 + 2a + ė) =  0.  

Taking into account the equality (56), we compute that:  
(67)       ėa2 + 2a + ė = 2a + ė(1 + a2) = 2a + ė(– 2a/e) = 2a(1 – ė/e) = (2a/e)(e – ė).  

Moreover:   
(68)       – 2 – 2a2 = – 2(1 + a2) = 4a/e. 

            Therefore, the quadratic equation (66) becomes (after dividing by 
2a/e):   
(69)       (e – ė)b2 + 2b + (e – ė) = 0.  
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The two roots of this equation are:  
(70)       b1 = {– 1 + [1 – (e – ė)2]1/ 2}(e – ė) – 1,    

(71)       b2 = {– 1 – [1 – (e – ė)2]1/ 2}(e – ė) – 1.   

            In the opposite case, we also may consider the equation (65) as a 
quadratic equation for the unknown variable a. Then we obtain the 
following quadratic equation:   
(72)       (ėb2 – 2b + ė)a2 + (2 + 2b2)a + (ėb2 – 2b + ė) = 0.  

           We compute that (in view of the equality (57)):  
(73)       ėb2 – 2b + ė = – 2b + ė(1 + b2) = – 2b + ė[– 2b/(e – ė)] =  

              = [– 2b/(e – ė)](ė + e – ė) = – 2be/(e – ė).  

           Moreover:   

(74)       2 + 2b2 = 2(1 + b2) = – 4b/(e – ė).   

           Then, the quadratic equation (72) becomes (after dividing by –2b/(e – 
– ė)):   
(75)       ea2 + 2a + e = 0.  

           The two roots of this equation are:  
(76)       a1 = [– 1 + (1 – e2)1/ 2]/e, 

(77)       a2 = [– 1 – (1 – e2)1/ 2]/e. 
   

           We stress that the equations (24) and (75) are identical, and, 
correspondingly, their roots (25) and {(76), (77)} coincide. But the situation 
is different when we compare the quadratic equations (36) and (69). 
Because, generally speaking, ė(u) ≠ 0, we have not coincidence between 
these relations, and, consequently, their solutions are not identical. For this 
reason, the notations {b1, b2} in the present chapter must not be confused 
with the corresponding notations for the roots in the preceding chapter! 
With this remark, we continue our investigation of the (possible) relations 
between the two systems of roots {a1, a2} and {b1, b2}. In general, the 
solutions of the equations (69) and (75) imply that we have four self-
consistent representations of the analytical expression for the integral  
                        2 π               
K1(e,ė) ≡ ∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 1 dφ. Namely: {a1, b1}, {a1, b2}, {a2, b1} and  
                        0                          
{a2, b2}. We shall prove now that all these four solutions for K1(e,ė) are 
equivalent! In view of this purpose, we consider the following four cases:   
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Case I: a1 = [– 1 + (1 – e2)1/ 2]/e, b1 = {– 1 + [1 – (e – ė)2]1/ 2}(e – ė) – 1.    
          For this case |a1| < 1 and |b1| < 1. We have already computed that 1 + 
+ (a1)

2 = (2/e2)[1 – (1 – e2)1/ 2] > 0 (see equality (38)). Further we calculate 
that:  
(78)       1 + (b1)

2 = 1 + {1 + 1 – (e – ė)2 – 2[1 – (e – ė)2]1/ 2}(e – ė) – 2 = 

              = 2{1 – [1 – (e – ė)2]1/ 2}( e – ė) – 2.   

The next evaluation is:  
(79)       |1 – (b1)

2| = 1 – (b1)
2 = 1 – {1 + 1 – (e – ė)2 – 2[1 – (e – ė)2]1/ 2}(e – ė) – 2 = 

              = {(e – ė)2 – 2 + (e – ė)2 + 2[1 – (e – ė)2]1/ 2}( e – ė) – 2 = 

              = 2{(e – ė)2 + [1 – (e – ė)2]1/ 2 – 1}(e – ė) – 2.   
Further we have:  

(80)       1 – a1b1 = 1 – [e(e – ė)] – 1[– 1 + (1 – e2)1/ 2]{– 1 + [1 – (e – ė)2]1/ 2} =  

              = [e(e – ė)] – 1{e(e – ė) – {1 – [1 – (e – ė)2]1/ 2 – (1 – e2)1/ 2 +  

              + (1 – e2)1/ 2[1 – (e – ė)2]1/ 2}}.   

Having available the above preliminary evaluations, we can write (in 
accordance to  the formula (59)):  
                                                       π               
(81)      (1/2)K1(e,ė) ≡ ∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 1 dφ = solution a1b1 =  
                                                        0                                
             = – π[1 – (e – ė)2] – 1/ 2ln{(2/e2)[1 – (1 – e2)1/ 2]} – 2π[2/(e – ė)2]×  
             ×{1 – [1 – (e – ė)2]1/ 2}[( e – ė)2/2]{1 – [1 – (e – ė)2]1/ 2 – (e – ė)2}– 1× 
             ×ln{{e(e – ė) – 1 + (1 – e2)1/ 2 + [1 – (e – ė)2)]1/ 2 – (1 – e2)1/ 2[1 – (e – ė)2]1/ 2}× 
             ×[ e(e – ė)] – 1} =  
             = – π[1 – (e – ė)2] – 1/ 2ln{(2/e2)[1 – (1 – e2)1/ 2]} – π{1 – [1 – (e – ė)2]1/ 2}× 
             ×{1 – [1 – (e – ė)2]1/ 2 – (e – ė)2} – 1ln{{e2(e2 + ė2 – 2eė) + 1 + 1 – e2 + 1 –  
             – (e2 + ė2 – 2eė) + (1 – e2)(1 – e2 – ė2 + 2eė) – 2(e2 – eė) + 2(e2 – eė)(1 – e2)1/ 2 +  
             + 2(e2 – eė)[1 – (e – ė)2)]1/ 2 – 2(e2 – eė)(1 – e2)1/ 2[1 – (e – ė)2)]1/ 2 – 2(1 – e2)1/ 2 –  
             – 2[1 – (e – ė)2)]1/ 2 + 2(1 – e2)1/ 2[1 – (e – ė)2]1/ 2 + 2(1 – e2)1/ 2[1 – (e – ė)2]1/ 2 –  
             – 2[1 – (e – ė)2]1/ 2 + 2e2[1 – (e – ė)2]1/ 2 – 2(1 – e2)1/ 2 –  

– 2(1 – e2)1/ 2(– e2 – ė2 + 2eė)}[e2(e – ė)2] – 1}.   
 

In the above derivation we have taken into account that the transition 
of the integration over the azimuthal angle φ from the interval [0, π] to the 
interval [0, 2π] gives exactly doubling of the result. That is to say:  
                                            2 π               
(82)       K1(e,ė) ≡ ∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 1 dφ =  
                                             0                            
                              π               
              = 2∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 1 dφ.    
                             0              
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We also note that we shall use further the following equality:  
(83)       [1 – (e – ė)2]1/ 2{[1 – (e – ė)2]1/ 2 – 1} = 1 – [1 – (e – ė)2]1/ 2 – (e – ė)2,  

in order to transform the denominator of the second term in the relation 
(81). In turn, we are able to perform a cancellation with the multiplier  
{–{1– [1 – (e – ė)2]1/ 2}} in the nominator. Combining the two terms into 
one, we obtain:  
 

(84)       solution a1b1 = π[1 – (e – ė)2] – 1/ 2ln{e2{4 – 6e2 + 2e4 + 6eė – 4e3ė – 2ė2 + 2e2ė2 +  
              + (– 4 + 4e2 – 6eė + 2ė2)(1 – e2)1/ 2 + (– 4 + 4e2 – 2eė)[1 – (e – ė)2)]1/ 2 +  
              + (4 – 2e2 + 2eė)(1 – e2)1/ 2[1 – (e – ė)2)]1/ 2}{2[1 – (1 – e2)1/ 2]e2(e – ė)2} – 1} =  
              = π[1 – (e – ė)2] – 1/ 2ln{{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 +  
              + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + (– 2 + 2e2 – eė)[1 – (e – ė)2)]1/ 2 +  
              + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2)]1/ 2}{[1 – (1 – e2)1/ 2](e – ė)2} – 1}.  
 

It is interesting to check what will be the behaviour of the above 
solution under the transition ė(u) → 0. We compute that:  

 

(85)       lim solution a1b1 = π(1 – e2) – 1/ 2ln{[2 – 3e2 + e4 + (– 2 + 2e2)(1 – e2)1/ 2 +  
             ė(u) → 0              
              + (– 2 + 2e2)(1 – e2)1/ 2 + 2 – e2 – 2e2 + e4]{e2[1 – (1 – e2)1/ 2]} – 1} =  
              = π(1 – e2) – 1/ 2ln{2[2 – 3e2 + e4 – 2(1 – e2)(1 – e2)1/ 2]{ e2[1 – (1 – e2)1/ 2]} – 1} =  
              = π(1 – e2) – 1/ 2ln{2(1 – e2)[2 – e2 – 2(1 – e2)1/ 2]{e2[1 – (1 – e2)1/ 2]} – 1}.   
   

We see that:   
(86)       [1 – (1 – e2)1/ 2][1 + (1 – e2)1/ 2] = 1 – (1 – e2) ≡ e2.   

            Consequently:  
 

(87)       [2 – e2 – 2(1 – e2)1/ 2]{e2[1 – (1 – e2)1/ 2} – 1 =  
              = [2 – e2 – 2(1 – e2)1/ 2][1 + (1 – e2)1/ 2] – 1[1 – (1 – e2)1/ 2] – 2 =  
              = [2 – e2 – 2(1 – e2)1/ 2][1 + (1 – e2)1/ 2] – 1[1 – 2(1 – e2)1/ 2 + 1 – e2] – 1 =  
              = 1/[1 + (1 – e2)1/ 2].   
 

            Substitution of (87) into (85) gives (see equality (42)):    

(88)       lim solution a1b1 = π(1 – e2) – 1/ 2ln{2(1 – e2)/[1 + (1 – e2)1/ 2]} = solution 1.   
              ė(u) → 0                  

            Consequently:  
 

(89)       lim (1/2)K1(e,ė) = (1/2)L0(e),   
              ė(u) → 0               

as we expected to be, in order to have an agreement between the definitions 
(3) and (4).  
        Case II: a1 = [– 1 + (1 – e2)1/ 2]/e, b2 = {– 1 – [1 – (e – ė)2]1/ 2}(e – ė) – 1.    
        For this case |a1| < 1 and |b2| > 1. We evaluate that:  
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(90)       1 + (b2)
2 = 1 + {1 + 1 – (e – ė)2 + 2[1 – (e – ė)2]1/ 2}(e – ė) – 2 =  

              = 2{1 + [1 – (e – ė)2]1/ 2}(e – ė) – 2,  
 

(91)       |1 – (b2)
2| ≡ (b2)

2 – 1 = {1 + 1 – (e – ė)2 + 2[1 – (e – ė)2]1/ 2 – (e – ė)2}(e – ė) – 2 =  
              = 2{1 – (e – ė)2 + [1 – (e – ė)2]1/ 2}(e – ė) – 2 = 2{{[1 – (e – ė)2]1/ 2}2 +  
              + [1 – (e – ė)2]1/ 2}(e – ė) – 2 = 2[1 – (e – ė)2]1/ 2{1 + [1 – (e – ė)2]1/ 2}(e – ė) – 2.  
 

Further we compute: 
 

(92)       1 – (a1/b2) = 1  – [– 1 + (1 – e2)1/ 2](e – ė){e{– 1 – [1 – (e – ė)2]1/ 2}} – 1 =  
              = {e + e[1 – (e – ė)2]1/ 2 – e + e(1 – e2)1/ 2 + ė – ė(1 – e2)1/ 2}× 
              ×{e{1 + [1 – (e – ė)2]1/ 2}} – 1 =  
              = {e(1 – e2)1/ 2 + e[1 – (e – ė)2]1/ 2 + ė – ė(1 – e2)1/ 2}{e{1 + [1 – (e – ė)2]1/ 2}} – 1.  
 

(93)       (1/2)K1(e,ė) = solution a1b2 = – π[1 – (e – ė)2] – 1/ 2ln{(2/e2)[1 – (1 – e2)1/ 2]} +  
            + 2π(e – ė)2{1 + [1 – (e – ė)2]1/ 2}{2(e – ė)2[1 – (e – ė)2]1/ 2{1 + [1 – (e – ė)2]1/ 2}} – 1× 
            ×ln{{e(1 – e2)1/ 2 + e[1 – (e – ė)2]1/ 2 + ė – ė(1 – e2)1/ 2}{e{1 + [1 – (e – ė)2]1/ 2}} – 1} =  
            = π[1 – (e – ė)2] – 1/ 2ln{e2{e2 – e4 + e2 – e2(e2 + ė2 – 2eė)  + ė2 + ė2 – e2ė2 +  
            + 2e2(1 – e2)1/ 2[1 – (e – ė)2]1/ 2 + 2eė(1 – e2)1/ 2 – 2eė(1 – e2) + 2eė[1 – (e – ė)2]1/ 2 –  
            – 2eė(1 – e2)1/ 2[1 – (e – ė)2]1/ 2 – 2ė2(1 – e2)1/ 2}{2e2[1 – (1 – e2)1/ 2]× 
           ×{1 + [1 – (e – ė)2]1/ 2}2} – 1} =  
           = π[1 – (e – ė)2] – 1/ 2ln{{e2 – e4 – eė + 2e3ė + ė2 – e2ė2 + (eė – ė2)(1 – e2)1/ 2 +  
           + eė[1 – (e – ė)2]1/ 2 + (e2 – eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2 }{[1 – (1 – e2)1/ 2]× 
           ×{1 + [1 – (e – ė)2]1/ 2}2} – 1}.  
  

In order to simplify the argument of the logarithm, we evaluate its 
two multipliers:  

 

(94)       {[1 – (1 – e2)1/ 2]{1 + [1 – (e – ė)2]1/ 2}2} – 1 = {1 – [1 – (e – ė)2]1/ 2}× 
             ×{[1 – (1 – e2)1/ 2]{1 + [1 – (e – ė)2]1/ 2}{1 + [1 – (e – ė)2]1/ 2}×  
             ×{1 – [1 – (e – ė)2]1/ 2}} – 1 =  
             = {1 – [1 – (e – ė)2]1/ 2}{[1 – (1 – e2)1/ 2]{ 1 + [1 – (e – ė)2]1/ 2}[1 – 1 + (e – ė)2]} – 1 = 
             = {1 – [1 – (e – ė)2]1/ 2}{(e – ė)2[1 – (1 – e2)1/ 2]{ 1 + [1 – (e – ė)2]1/ 2}} – 1,  
 

(95)       {1 – [1 – (e – ė)2]1/ 2}{e2 – e4 – eė + 2e3ė + ė2 – e2ė2 + (eė – ė2)(1 – e2)1/ 2 +  
              + eė[1 – (e – ė)2]1/ 2 + (e2 – eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2} = (e – ė)2(1 – e2 + eė) –  
              – (e – ė)2(1 – e2 + eė)( 1 – e2)1/ 2 – (e – ė)2(1 – e2)[1 – (e – ė)2]1/ 2 +  
              + (e – ė)2(1 – e2)1/ 2[1 – (e – ė)2]1/ 2 = (e – ė)2{(1 – e2 + eė)[ 1 – (1 – e2)1/ 2] +  
              + (1 – e2)1/ 2[1 – (e – ė)2]1/ 2[1 – (1 – e2)1/ 2]} =  
              = (e – ė)2[1 – (1 – e2)1/ 2]{1 – e2 + eė + (1 – e2)1/ 2[1 – (e – ė)2]1/ 2}.  
 

Substitution of the above results (94) and (95) into (93) gives:   

(96)       (1/2)K1(e,ė) = solution a1b2 = π[1 – (e – ė)2] – 1/ 2ln{( e – ė)2[1 – (1 – e2)1/ 2]× 
              ×{1 – e2 + eė + (1 – e2)1/ 2[1 – (e – ė)2]1/ 2}{(e – ė)2[1 – (1 – e2)1/ 2]× 
              ×{1 + [1 – (e – ė)2]1/ 2}} – 1} =  
              = π[1 – (e – ė)2] – 1/ 2ln{{1 – e2 + eė +  
              + (1 – e2)1/ 2[1 – (e – ė)2]1/ 2}{1 + [1 – (e – ė)2]1/ 2}– 1}.  
 

It is easy to see that the transition ė(u) → 0 gives the expected result:   
  

(97)       lim solutiona1b2 = lim[π[1 – (e – ė)2] – 1/ 2ln{{1 – e2 + eė +  
              ė(u) → 0                ė(u) → 0               
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              + (1 – e2)1/ 2[1 – (e – ė)2]1/ 2}{1 + [1 – (e – ė)2]1/ 2}– 1}] =  
              = π(1 – e2) – 1/ 2ln{2(1 – e2)[1 + (1 – e2)1/ 2] – 1} = (1/2)L0(e).  
 

There arises the natural question: whether the coincidence of the 
solution a1b1 and the solution a1b2 happens only in the limit ė(u) → 0, or it 
is due to the equivalence of these solutions in general ? We shall show that 
the later situation is true. For this purpose, it is enough to check the equality 
of the arguments of the logarithmic functions. In fact, this means to verify 
that:   

 

(98)       {1 + [1 – (e – ė)2]1/ 2}{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 +  
              + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + (– 2 + 2e2 – eė)[1 – (e – ė)2)]1/ 2 +  
              + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2)]1/ 2} =  
              = e2 – e4 – 3e2ė + (– e2 + e4 + 2eė – 3e3ė – ė2 + 3e2ė2 – eė3)(1 – e2)1/ 2 +  
              + (– e2 + e4 + 2eė – 2e3ė – ė2 + e2ė2)[1 – (e – ė)2]1/ 2 – 2eė + 3e3ė + eė3 + ė2 +  
              + (e2 – 2eė + ė2)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2,  
 

(99)       [1 – (1 – e2)1/ 2](e – ė)2{1 – e2 + eė + (1 – e2)1/ 2[1 – (e – ė)2]1/ 2} = e2 – e4 – 2eė +  
              + 3e3ė + ė2 – 3e2ė2 + (– e2 + e4 + 2eė – 3e3ė – ė2 + 3e2ė2 – eė3)(1 – e2)1/ 2 +  
              + (– e2 + e4 + 2eė – 2e3ė – ė2 + e2ė2)[1 – (e – ė)2]1/ 2 +  
              + (e2 – 2eė + ė2)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2.   
 

  The right-hand-sides of the above two equalities (98) and (99) are 
equal, which, in turn, after all, implies the equivalence of the solution a1b1 
(given by formula (84)) and solution a1b2 (given by formula (96)).   

 Case III: a2 = [– 1 – (1 – e2)1/ 2]/e, b1 = {– 1 + [1 – (e – ė)2]1/ 2}(e – ė) – 1.    
      For  this  case  |a2| > 1  and  |b1| < 1. We have already computed that  1 +  
+ (a2)

2 = (2/e2)[1 + (1 – e2)1/ 2] (see equality (44)), which gives us the 
opportunity to write the expression (59) into the form:   
                                                         π               

(100)     (1/2)K1(e,ė) ≡ ∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 1 dφ = solution a2b1 =  
                                                         0                                                    
            = – π[1 – (e – ė)2] – 1/ 2ln{(2/e2)[1 + (1 – e2)1/ 2]} – 2π{1 – [1 – (e – ė)2]1/ 2]}× 
              ×{1 – [1 – (e – ė)2]1/ 2] – (e – ė)2}– 1ln|a2 – b1| =  
              = – π[1 – (e – ė)2] – 1/ 2ln{(2/e2)[1 + (1 – e2)1/ 2]} + π{1 – [1 – (e – ė)2]1/ 2]}× 
              ×{ [1 – (e – ė)2]1/ 2]{1 – [1 – (e – ė)2]1/ 2]}– 1ln(a2 – b1)

2 =  
              = π[1 – (e – ė)2] – 1/ 2ln{(e2/2)(a2 – b1)

2[1 + (1 – e2)1/ 2] – 1}.  
 

We take into account that:   
 

(101)      [1 + (1 – e2)1/ 2] – 1 = [1 – (1 – e2)1/ 2] 2[1 – (1 – e2)1/ 2] – 1[1 – (1 – e2)1/ 2] – 1× 
             ×[1 + (1 – e2)1/ 2] – 1 = [2 – e2 – 2(1 – e2)1/ 2]e– 2[1 – (1 – e2)1/ 2] – 1.   
 

(102)      (a2 – b1)
2 = {[– 1 – (1 – e2)1/ 2]/e – {– 1 + [1 – (e – ė)2]1/ 2}(e – ė) – 1} =  

             = {(e – ė)(1 – e2)1/ 2 + e – ė – e + e[1 – (e – ė)2]1/ 2}2e – 2(e – ė) – 2 =  
             = {(e2 + ė2 – 2eė)(1 – e2) + ė2 + e2 – e2(e2 + ė2 – 2eė) + (– 2eė + 2ė2)(1 – e2)1/ 2 +  
             + (2e2 – 2eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2 – 2eė[1 – (e – ė)2]1/ 2}e – 2(e – ė) – 2 =  
             = 2{e2 – e4 – eė + 2e3ė + ė2 – e2ė2 – ė(e – ė)(1 – e2)1/ 2 +  
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             + e(e – ė)( 1 – e2)1/ 2[1 – (e – ė)2]1/ 2 – eė[1 – (e – ė)2]1/ 2}e – 2(e – ė) – 2.   
 

Having in mind the above intermediate calculations (101) and (102), 
we are able to rewrite the expression (100) in the following way:   

 

(103)     (1/2) K1(e,ė) = solution a2b1 = π[1 – (e – ė)2] – 1/ 2ln{2e2[2 – e2 – 2(1 – e2)1/ 2× 
              ×{e2 – e4 – eė + 2e3ė + ė2 – e2ė2 – e(e – ė)(1 – e2)1/ 2 +  
              + e(e – ė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2 – eė[1 – (e – ė)2]1/ 2}× 
              ×{2e2[1 – (1 – e2)1/ 2e2(e – ė)2}– 1} =  
              = π[1 – (e – ė)2] – 1/ 2ln{{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 +  
              + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 +  
              + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}(e – ė)– 2[1 – (1 – e2)1/ 2] – 1} =  
              = solution a1b1.  
 

To establish the equivalence of the solution a2b1 with the solution 
a1b1, we have used the result (84).  

Case IV: a2 = [– 1 – (1 – e2)1/ 2]/e, b2 = {– 1 – [1 – (e – ė)2]1/ 2}(e – ė) – 1.         
       For this case |a2| > 1 and |b2| > 1. Using the already computed 
expression for 1 + (a2)

2 (equality (44)), we have, according to formula (59), 
the following solution for the integral K1(e,ė):   
                                                         π               
(104)     (1/2)K1(e,ė) ≡ ∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 1 dφ = solution a2b2=  
                                                         0         
              = – π[1 – (e – ė)2] – 1/ 2ln{(2/e2)[1 + (1 – e2)1/ 2]} + 2π[1 – (e – ė)2] –1/ 2]× 
              ×ln|a2 – 1/b2| = π[1 – (e – ė)2] – 1/ 2ln{(e2/2)(a2 – 1/b2)

2[1 + (1 – e2)1/ 2] – 1} =  
              = π[1 – (e – ė)2] – 1/ 2ln{(e2/2)[1 + 1 – e2 – 2(1 – e2)1/ 2](a2 – 1/b2)

2× 
              ×[1 – (1 – e2)1/ 2] – 1[1 – (1 – e2)1/ 2] – 1[1 + (1 – e2)1/ 2] – 1} =  
              = π[1 – (e – ė)2] – 1/ 2ln{(e2/2)[2 – e2 – 2(1 – e2)1/ 2](a2 – 1/b2)

2[1 – (1 – e2)1/ 2] – 1× 
              ×(1 – 1 + e2) – 1}.  
 

It remains to calculate the multiplier (a2 – 1/b2)
2, in order to finish 

the evaluation of the integral K1(e,ė) in this last Case IV.  
 

(105)     (a2 – 1/b2)
2 = {[– 1 – (1 – e2)1/ 2]/e – (e – ė){– 1 – [1 – (e – ė)2]1/ 2}– 1}2 =  

              = {[1 + (1 – e2)1/ 2]{1 + [1 – (e – ė)2]1/ 2} – e(e – ė)}2e – 2{1 + [1 – (e – ė)2]1/ 2}– 2 = 
              = {1 – e2 + eė + (1 – e2)1/ 2 + [1 – (e – ė)2]1/ 2 + (1 – e2)1/ 2[1 – (e – ė)2]1/ 2×  
              ×e – 2{1 + [1 – (e – ė)2]1/ 2}– 2} = 2{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 +  
              +  (2 – 2e2 + 3eė – ė2)(1 – e2)1/ 2 + (2 – 2e2 + eė)[1 – (e – ė)2]1/ 2 +  
              + (2 – 2e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}e – 2{1 + [1 – (e – ė)2]1/ 2}– 2.    

Substitution of the above equality into (104) leads to:  
 

(106)     (1/2)K1(e,ė) = solution a2b2 = π[1 – (e – ė)2] – 1/ 2ln{2[2 – e2 – 2(1 – e2)1/ 2× 
              ×{1 – [1 – (e – ė)2]1/ 2}2{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 +  
              + (2 – 2e2 + 3eė – ė2)(1 – e2)1/ 2 + (2 – 2e2 + eė)[1 – (e – ė)2]1/ 2 +  
              + (2 – 2e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}{2e2[1 – (1 – e2)1/ 2]× 
              ×{1 + [1 – (e – ė)2]1/ 2}2{1 – [1 – (e – ė)2]1/ 2}2} – 1},   
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where we have multiplied both the nominator and the denominator of the 
argument of the logarithm by the same multiplier {1 – [1 – (e – ė)2]1/ 2}2.   

We also have the equality:   
(107)     {1 + [1 – (e – ė)2]1/ 2}2{1 – [1 – (e – ė)2]1/ 2}2 = [1 – 1 + (e – ė)2]2 ≡ (e – ė)4.  

After some tedious algebra, we arrive at the final expression for 
K1(e,ė):  

 

(108)      (1/2)K1(e,ė) = solution a2b2 = π[1 – (e – ė)2] – 1/ 2ln{e2(e – ė)2{2 – 3e2 + e4 +  
             + 3eė – 2e3ė – ė2 + e2ė2 + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 +  
             + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}× 
             ×{e2(e – ė)4[1 – (1 – e2)1/ 2]}– 1} = solution a1b1.  
 

In this way, we obtain that for all the possible cases, prescribed by 
the formula (59) for the different combinations {ai, bj}, (i, j = 1, 2) of the 
roots a1, a2, b1 and b2, the solutions for the integral K1(e,ė) are equivalent. 
Of course, it is reasonable to check whether these evaluations remain valid 
under these values of the variables e(u), ė(u) and e(u) – ė(u), when we strike 
with nullification of some of the denominators in the intermediate 
calculations. For example, if e(u) = 0, we have that:   
                                            2 π                              
(109)     K1(0,ė) ≡ ∫[ln(1)](1 + ėcosφ) – 1 dφ = 0.   
                                             0                          

At the same time, from formula (84) (describing the solution a1b1), 
we may evaluate the factor in the argument of the logarithmic function, 
which is associated with the “peculiar” behavior under the limit transition 
e(u) → 0. Omitting the multiplier 1/(e – ė)2, which tends to 1/ė2, when e(u) 
→ 0, we have to compute the following limit:  

 

(110)     lim{{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 +  
              e(u) → 0           
              + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}× 
              ×{[1 – (1 – e2)1/ 2]}– 1}.   
 

Because for the denominator we have:    

(111)     lim{∂/∂e[1 – (1 – e2)1/ 2]} = lim[e(1 – e2) – 1/ 2] = 0,   
             e(u) → 0                              e(u) → 0            
 

(112)     lim{∂/∂e[e(1 – e2) – 1/ 2]} = lim[(1 – e2) – 1/ 2 + e2(1 – e2) – 3/ 2] = 1.   
             e(u) → 0                             e(u) → 0         

This means that if we want to evaluate the expression (110) by 
means of the L’Hospital’s rule, we need to apply it two successive times. It 
is easily verified that the conditions for such an approach are fulfilled. In 
fact, we have to calculate the second derivative of the nominator in the 
equality (110), and than to take the limit e(u) → 0.  
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(113)      lim{∂2/∂e2{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 +  
              e(u) → 0                   
             + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 +  
             + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}} = lim{∂/∂e{– 6e + 4e3 + 3ė – 6e2ė +  
                                                                                   e(u) → 0 
             + 2eė2 + (4e – 3ė)(1 – e2)1/ 2 + (2e – 2e3 + 3e2ė – eė2)(1 – e2) – 1/ 2 +  
             +(4e – ė)[1 – (e – ė)2]1/ 2 + (2e – 2e3 – 2ė + 3e2ė – eė2)[1 – (e – ė)2] – 1/ 2 +  
             + (– 2e + ė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2 + (– 2e + e3 – e2ė)(1 – e2) – 1/ 2× 
             ×[1 – (e – ė)2]1/ 2 + (– 2e + e3 + 2ė – 2e2ė + eė2)( 1 – e2)1/ 2[1 – (e – ė)2] – 1/ 2 } =  
             = lim{– 6 + 12e2 – 12eė + 2ė2 + 4(1 – e2)1/ 2 – (4e – 3ė)e(1 – e2) – 1/ 2 +   
                e(u) → 0            
             + (2 – 6e2 + 6eė – ė2)(1 – e2) – 1/ 2 + (2e – 2e3 + 3e2ė – eė2)e(1 – e2) – 3/ 2 –  
             – (4e – ė)(e – ė)[1 – (e – ė)2] – 1/ 2 + (2 – 6e2 + 6eė – ė2)[1 – (e – ė)2] – 1/ 2 +  
             + (2e – 2e3 – 2ė + 3e2ė – eė2)(e – ė)[1 – (e – ė)2] – 3/ 2 –  
             – 2(1 – e2)1/ 2[1 – (e – ė)2]1/ 2 + (2e – ė)e(1 – e2) – 1/ 2[1 – (e – ė)2]1/ 2 +  
             + (2e – ė)(e – ė)(1 – e2)1/ 2[1 – (e – ė)2] – 1/ 2 +  
             + (– 2 + 3e2 – 2eė)(1 – e2) – 1/ 2[1 – (e – ė)2]1/ 2 + (– 2e + e3 – e2ė)e(1 – e2) – 3/ 2×  
             ×[1 – (e – ė)2]1/ 2 + (– 2e + e3 – e2ė)(e – ė)(1 – e2) – 1/ 2[1 – (e – ė)2] – 1/ 2 +  
             + (– 2 + 3e2 – 4eė + ė2)(1 – e2)1/ 2[1 – (e – ė)2] – 1/ 2 –  
             – (– 2e + e3 + 2ė – 2e2ė + eė2)e(1 – e2) – 1/ 2 +  
             + (– 2e + e3 + 2ė – 2e2ė + eė2)(e – ė)(1 – e2)1/ 2[1 – (e – ė)2] – 3/ 2} =  
             = – 6 + 2ė2 + 4 + 2 – ė2 + 4(1 – ė2)1/ 2 – ė2(1 – ė2) – 1/ 2 + (2 – ė2)(1 – ė2) – 1/ 2 –  
             – 2(1 – ė2)1/ 2 + ė2(1 – ė2) – 1/ 2 – 2(1 – ė2)1/ 2 + (– 2 + ė2)(1 – ė2) – 1/ 2 –  

– 2ė2(1 – ė2) – 1(1 – ė2) – 1/ 2 = ė2.   
 

Consequently (using two times the L’Hospital’s rule), we have:  
 

(114)     {lim(e – ė) – 2}lim{[1 – (1 – e2)1/ 2] – 1{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 +  
              e(u) → 0        e(u) → 0                    
             + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 +  
             + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}} = (1/ė2)ė2 = 1.  
 

It seems out that the argument of the logarithm in the solution a1b1 
approaches unity, when e(u) → 0, and, correspondingly, the value of the 
logarithm approaches zero. This is in agreement with the direct computation 
of the integral K1(e,ė), when e(u) = 0 (see equality (109)).   
            As regards to the situation when e(u) – ė(u) = 0 (this possibility is 
excluded a priori by hypothesis during the calculation of the expression 
(84)), a direct computation of the integral K1(e,ė = e) gives:   
                                                                    π                           
(115)     (1/2) K1(e,ė = e) ≡ ∫ln(1 + ecosφ) dφ = π ln{[1 + (1 – e2)1/ 2]/2}.  
                                                                    0           

            Here we have used formula 865.44 from Dwight [6], setting in it a = 
= 1 and b = e(u), and taking into account that for the all parts of the 
accretion disc e(u) is less than unity (by absolute value).The transition e(u) – 
– ė(u) → 0 may be attained in two ways: (i) by fixing ė(u) and letting e(u) to 
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approach ė(u), and (ii) by fixing e(u) and letting ė(u) to approach e(u). If we 
apply these two methods to the expression (84), drawing the 
correspondingly times the L’Hospital’s rule for revealing of indeterminacies 
of the type 0/0, we shall obtain a result which is identical to the relation 
(115). This means that the formula (84) can be useful also in the case when 
e(u) – ė(u) = 0, despite it was derived under the rejection of the later 
equality. It is important only to remember that in this “peculiar” case it is 
necessary to perform the limit transition e(u) – ė(u) → 0. This transition 
gives also a continuous passage of the integral K1(e,ė) through the point  
e(u) – ė(u) = 0. We shall not write here the tedious computations, which 
prove the above statements. We restrict us only to mention that they are 
valid, in order to underline that the formula (84) (respectively, solution a1b1 
= solution a1b2 = solution a2b1 = solution a2b2) is not limited by any 
restrictions, imposed by the values of the eccentricity e(u) and its derivative 
ė(u) ≡ de(u)/du. Of course, the quantities e(u) and ė(u) oneself must obey 
the three inequalities |e(u)| < 1, |ė(u)| < 1 and |e(u) – ė(u)| < 1. They are  
induced by the properties of the considered elliptical accretion disc model 
[1], as mentioned earlier. To end this chapter, we write into the final form 
the analytical expression for the integral K1(e,ė). Taking into account that 
the transition of the integration over the azimuthal angle φ from the interval 
[0, π] to the interval [0, 2π] simply leads to a doubling of the result, we are 
able to give the following analytical formula:   
                                            2 π               

(116)   K1(e,ė) ≡ ∫[ln(1 + ecosφ)][1 + (e – ė)cosφ] – 1 dφ =  
                                            0                     
              = 2π[1 – (e – ė)2] – 1/ 2ln{{2 – 3e2 + e4 + 3eė – 2e3ė – ė2 + e2ė2 +  
              + (– 2 + 2e2 – 3eė + ė2)(1 – e2)1/ 2 + (– 2 + 2e2 – eė)[1 – (e – ė)2]1/ 2 +  
              + (2 – e2 + eė)(1 – e2)1/ 2[1 – (e – ė)2]1/ 2}(e – ė) – 2[1 – (1 – e2)1/ 2] – 1}.  
 

3. Conclusions  
     

In the present paper we have moved one step more towards the 
revealing of the mathematical characteristics of the dynamical equation. The 
later determines the spatial structure of the stationary elliptical accretion 
discs, according to the model of Lyubarskij et al. [1]. More concretely, it is 
shown,  that  we are  able  to  perform  analytical  evaluations  of  two  kinds  
of integrals, which are functions of the eccentricity e(u) and its derivative 
ė(u) ≡ de(u)/du. Namely, these are Li(e,ė), (i = 0, ..., 3) and Kj(e,ė), (j = 1, 
..., 5), defined by the equalities (3) and (4), respectively. It is possible to 
calculate analytical expressions for the integrals Li(e,ė), (i = 1, 2, 3) through 
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recurrence relations, under the condition that both the lower order (in the 
sense of the indices i and j) integrals Li(e,ė) and Kj(e,ė) are already known. 
About the computation of the integrals Kj(e,ė), (j = 1, ..., 5) the situation is 
slightly different. There is not need to know the expressions for Li(e,ė),  
(i = 0, ..., 3), but only these for the other integrals Km(e,ė), (m = 1, ...,  
j – 1). In preparation to solve the so mentioned two kinds of integrals, we 
have computed the “initial” integrals L0(e) and K1(e,ė), which are 
recognized to serve as starting points for the established recurrence 
relations. The complete set of analytical solutions for the integrals Li(e,ė),  
(i = 1, 2, 3) and Kj(e,ė), (j = 2, ..., 5) will be expressed in a forthcoming 
paper [7]. Until now, we have traced out the way to reach the determination 
of these analytical formulas. As follows from the evaluations of L0(e) and 
K1(e,ė), we strike with somewhat tedious calculations of these two integrals. 
But nevertheless, they lead to the pleasurable conclusion that all possible 
combinations of the permitted values of the parameters give identical 
solutions for the integrals L0(e) and K1(e,ė). This property, i.e., the 
uniqueness of the solutions, obviously facilitates our task to find the 
analytical solutions of  the integrals  Li(e,ė), (i = 0, ..., 3)  and  Kj(e,ė),   
(j  =  1, ..., 5).   
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АНАЛИТИЧНО ПРЕСМЯТАНЕ НА ДВА ИНТЕГРАЛА, 
ВЪЗНИКВАЩИ В ТЕОРИЯТА НА ЕЛИПТИЧНИТЕ 

АКРЕЦИОННИ ДИСКОВЕ. II. РЕШАВАНЕ НА НЯКОИ 
СПОМАГАТЕЛНИТЕ ИНТЕГРАЛИ, СЪДЪРЖАЩИ 

ЛОГАРИТМИЧНИ ФУНКЦИИ В СВОИТЕ ИНТЕГРАНДИ 
 

Д. Димитров 
 

Резюме 
           Тази статия е част от изследванията, третиращи математическата 
структура на стационарните елиптични акреционни дискове в модела 
на Любарски и др. [1], т.е., дискове при които всички апсидни линии на 
орбитите на частиците лежат върху една и съща права линия. Главната 
отличителна черта на възприетия подход е да се намерят линейни 
зависимости между интегралите, влизащи в това уравнение. Те ще ни 
дадат възможност да елиминираме тези сложни (и изобщо казано, 
неизвестни в аналитичен вид) функции на ексцентрицитета e(u) и 
неговата производна ė(u) ≡ de(u)/du на орбитите. Тук u ≡ ln(p), където 
p е фокалният параметър на орбитата на съответната частица от 
акреционния диск. В течение на процеса на реализиране на тази 
програма, ние се сблъскваме с необходимостта да намерим аналитични 
оценки за два вида интеграли:  

                     2 π                                                                                                                                                                                                         2 π                      

Li(e,ė) ≡ ∫[ln(1 + ecosφ)](1 + ecosφ) – 1[1 + (e – ė)cosφ]  – i dφ, (i = 0,…, 3), and Kj(e,ė) ≡ ∫[ln(1 + ecosφ)]× 
                      0                                                                                                                                                                                                            0                 
×[1 +(e – ė)cosφ] – j dφ, (j = 1, …, 5). В настоящето изследване, ние намираме 
рекурентни съотношения, даващи ни възможност да изчислим 
интегралите Li(e,ė), (i = 1, .., 3) при условие че интегралите Li–1(e,ė) и 
Ki(e,ė) са вече известни. Обратно, изчисленията на интегралите Kj(e,ė), 
(j = 1, ...,5), чрез рекурентни зависимости, не изискват знанието на 
аналитичните решения на интегралите Li(e,ė), (i = 0, .., 3). С оглед на 
факта, че интегралите L0(e) (той не зависи от ė(u)) и K1(e,ė) служат 
като “отправни точки” в съответните рекурентни съотношения, ние 
сме намерили аналитични изрази за тях. Решаването на пълната 
система от аналитични оценки за Li(e,ė), (i = 1, ..., 3), и Kj(e,ė), (j = 2, 
...,5), ще бъде дадено другаде [7].     
 


